Cholera Vaccine investment strategy

Background document #1

November 2013

Executive Summary

GAVI support for planned recurring cholera vaccine campaigns could help prevent endemic cholera and mitigate the risk of epidemics in poor communities while significantly shaping supply

- Two-dose campaigns targeting high-risk areas every 3 or 5 years
- Would require country-tailored vaccination strategies (a change from GAVI's current programme support) which is based on standard population/birth cohort projections)
- GAVI demand could incentivise expansion of supply from 3-4M to ~50M doses per year by 2020
- Endemic countries view cholera as a high priority

Key challenges: uncertainty around health impact of GAVI support for preventive approach in endemic settings and possible high cost per death averted relative to other GAVI vaccines due to recurring campaign costs

- Limited experience with preventive approach
- Campaigns are resource intensive in order to ensure high 2-dose coverage at regular 3 or 5 year intervals
- Questions about sustainability of repeated GAVI-funded campaigns
- Also, limited supply a risk to implementation in short and medium term, especially if outbreak response requires large proportion of supply capacity

Recommendation: contribute to the global cholera stockpile for use in epidemic and endemic settings

- Do not open a 'routine' funding window
- Alternative investment in cholera stockpile to 1) shape the cholera market, 2) reduce deaths from epidemics, and 3) serve as a bridge to potential future support for planned recurring campaigns
- Projected cost: \$115M over 2014-2018

Key cholera vaccine benefits

<u>Planned, preventive campaign approach</u>: prevent epidemics in poor communities, opportunity to shape cholera vaccine market, high country demand

Key benefits

Key cholera vaccine challenges:

<u>Planned, preventive campaign approach</u>: recurring campaigns could be a programmatic burden / costly and supply constraints may hinder implementation

Questions about sustainability of Health impact repeated GAVI-funded campaigns High recurring Estimate \$388-606M in GAVI + campaign costs **Epidemic potential** country operational costs from 2015-2030 Impact on vaccine markets High operational costs of **Relatively low** recurring campaigns increases value for money (in cost per death averted; though Cost benefits of epidemic mitigation terms of direct deaths extend beyond direct deaths averted) averted Value for money Unique global and country If increase in capacity not realised implementation as quickly as forecasted, country requirements Limited supply introduction timing or vaccination and irregular demand strategy would need to be altered, Country views affecting impact

Key challenges

Cholera vaccine investment scenarios: planned, recurring campaigns and/or support stockpile

Strategies and assumptions are for modeling purposes. Actual implementation strategies will be based upon guidance received from WHO's Strategic Advisory Group of Experts and other WHO expert bodies. All strategies are modelled without financial constraints

Note: subsequent slides 5-15 present VIS assessment for planned, recurring campaign scenario (e.g. analyses of demand, impact, cost and implementation feasibility)

1. Country specific, eg urban slums and rural areas w/o access to clean water

Est. 444-704M doses needed through 2030 for periodic, preventive campaigns (supply constrained)

Notes: (1) Includes demand from countries that graduate from GAVI support during 2015-2030 (following GAVI supported intro.)

(2) Forecasts for all scenarios developed with guidance from manufacturers on potential supply capacity

(3) Target population for >1Y scenario reduced to equal doses need for 1-15Y scenario in light of supply constraints

Uncertain estimate of 37,000 – 130,000 deaths averted over 2015-2030 at \$934M-\$1.4B

Separate consideration should be given to the mitigating effect of vaccination on preventing the serious social and economic consequences of epidemics.

		1-15Y, 3 years	1-15Y, 5 years	>1Y, 5 years
	Fully vaccinated persons	272M	173M	173M
Impact	Total future deaths averted	IVI: 130,000 CSQUID: 37,000 ¹	Not available	Not available
	Deaths averted per 100k vaccinated	IVI: 48 CSQUID: 13	Not available	Not available
	GAVI procurement cost	\$840M	\$546M	\$546M
	GAVI operational costs	\$387M	\$246M	\$246M
Cost	Total GAVI cost	\$1.2B	\$792M	\$792M
	Country operational costs	\$220M	\$142M	\$142M
	Total cost	\$1.4B	\$934M	\$934M
Value for money	Total cost per death averted	IVI: \$11,000 CSQUID: 39,000	Not available	Not available

1. CSQUID estimates available for four countries only; impact calculated by extrapolating cases averted per 100k persons vaccinated; CFR of 1.5-2.5% was applied to convert cases averted to deaths averted.

6

Direct health impact of recurring, preventive campaigns relatively low but estimates uncertain

Future deaths averted per 100k vaccinated¹

Note: Model outputs shown for vaccination of 1-15Y every 3 years for illustrative purposes; error bars show highest and lowest value generated by sensitivity analyses and are driven by sensitivities in CSQUID estimate; point estimate represents midpoint of IVI and CSQUID estimates Source: VIS analysis

Relatively few total deaths averted in 2015-2030 (uncertain estimates and small country scope)

Note: green indicates vaccine would only be rolled out in a subset of GAVI countries

Note: model outputs shown for vaccination of 1-15Y every 3 years for illustrative purposes; error bars show highest and lowest value generated by sensitivity analyses and are driven by sensitivities in CSQUID and IVI models; point estimate represents midpoint of IVI and CSQUID estimates Source: VIS analysis

Country support window for preventive campaigns at relatively low cost

1. Includes operational + procurement cost to GAVI and vaccine introduction grats 2. VIS only

Note: model outputs shown for vaccination of 1-15Y every 3 years for illustrative purposes; error bars driven by sensitivity analysis on vaccine price Source: GAVI Financial Forecast v7.0Fb as of July 2013, VIS analysis

High cost per death averted driven by campaign cost and relatively few deaths averted

1. Includes operational + procurement cost to GAVI and country; 3. Includes deaths averted for Hep B and Hib; VIS only

Note: model outputs shown for vaccination of 1-15Y every 3 years for illustrative purposes; error bars based on highest cost / lowest impact and lowest cost / highest impact as generated iby sensitivity analyses; point estimate represents midpoint of IVI and CSQUID estimates Source: GAVI Financial Forecast v7.0Fb as of July 2013, VIS analysis

Cholera is a fairly high priority for respondents from endemic countries

Survey respondents: cholera vaccine ranked as second highest priority for country introductions

Quotes from in-depth country interviews

"[Cholera] with political interest in [my country] and public demand, would likely introduce as early as possible"

"We have experience doing campaigns in the <15Y group (measles, rubella, and JE). There should be no issue"

"It would be wise to start strengthening surveillance in [my country] before introducing the vaccine, to be able to identify high risk areas and changing target populations"

Survey question: please rank all of the following vaccines in terms of prioritisation for future introduction in your country Note: survey focused on planned, preventive campaign scenario (not stockpile) Source: 2013 GAVI country consultation survey, total responses = 182, 81 from countries in scope for GAVI support of cholera

Most respondents felt targeted, preventive cholera campaigns would be feasible

How feasible do you think the proposed periodic campaigns would be in your country?

Where would you implement cholera vaccine campaigns?

Source: 2013 GAVI Phase II country consultation survey, total n = 182

Note: cholera-specific questions asked only to respondents ranking cholera as a first or second priority for introduction

Most respondents not concerned about targeting 1-15Y though some prefer a broader age group

0

Too restrictive

to achieve

desired impact

Would you have any concerns about targeting 1-15 years old?

Older age

groups will

demand

access

Children

under 5 years

of age should

be sufficient

If yes, specify why:

Source: 2013 GAVI Phase II country consultation survey, total n = 182

Note: cholera-specific questions asked only to respondents ranking cholera as a first of second priority for introduction

No response

Most respondents view cholera vaccine as supplementary to WaSH improvements

Please indicate the statement(s) that most closely apply for your country:

GAVI support for cholera vaccine would come with several unique implementation requirements

	Area of focus	Unique implementation requirements	Unique costs		
evel	Policies and processes				
Global level	Supply	 Severely limited production capacity forecasted through ~2020; need to ensure current efforts to overcome these difficulties are successful Manage periodic campaign supply with irregularity of demand between years 	 No direct costs 		
	Health workforce	 Periodic campaigns will require significant staff 	 Cost accounted for in operational costs¹ 		
Country level	Social mobilisation, education, communication	 Challenge of drop-out with two dose campaigns, especially among older individuals who are more mobile (note: studies underway to test whether 1 dose is sufficient for outbreak response settings (not testing for endemic settings) Acknowledgement of cholera burden (vs. 'watery diarrhea') 	 Cost accounted for in operational costs¹ 		
	Supply chain infrastructure and logistics	 Periodic campaigns in rural areas increases transport requirements May require significant cold-chain capacity; thermostability studies on-going 	 Cost accounted for in operational costs¹ 		
	Surveillance	 Build surveillance for on-going risk assessment and identification of hotspots (stool culture, rapid diagnosis, Polymerase Chain Reaction) 	 Surveillance investments 		
	Planning, coordination, integration	 Coordination with WaSH (water, sanitation and hygiene) and case management efforts to ensure these are not negatively affected 	 Focused organizational effort for coordination 		
		Unique but manageable May not be manageable in short term / within current GAVI model	GAVI		

1. Expected to be covered by GAVI co-financing, MoH, partners

Alternative investment: support for global stockpile at cost up to \$115M over 2014-2018

	Illustrative cost of stockpile: \$115M over 2014-2018	Stockpile support would achieve three objectives
	5-year 2014 2015 2016 2017 2018 total	Bridge to future planned, preventive campaigns Raise awareness and increase country demand
Doses	Gradually increasing up to 20M doses per year	 Demonstrate optimal implementation strategies (some doses to be reserved for preventive use) Improve surveillance systems and understanding of burden
Cost	\$8.5M \$17M \$25.5M \$34M \$29.3M \$115M	 Market shaping Increase overall OCV supply and annual regularity Attract additional manufacturers to the market, potentially lowering price Shorten lead time Incentivise new vaccine development
	me of these costs may be reimbursed by countries evolving fund mechanism	

Aid global outbreak response

Options for a cholera investment

Contribute to global Open country support **Open country support** No GAVI support for window for periodic, window for periodic, cholera stockpile cholera vaccine preventive campaigns preventive campaigns 5-year investment over Also, contribute to 2014-2018 global cholera ~\$115M total cost stockpile • Up to 70M doses

Recommended option

Implications of no GAVI support

Continuing cholera in endemic and epidemic countries until longer term WaSH improvements materialize

Missed opportunity for market shaping with consequences for global OCV supply capacity

Other funders may step in to fund OCV stockpile

Cholera: experts and sources consulted

Sources

- WHO Cholera Fact Sheet Nº107, July 2012
- WHO position paper, WER, No. 13, 2010, 85: 117-128
- SAGE Working Group: Vaccination in Acute Humanitarian Emergencies: a Framework for Decision-Making (Revised draft Oct 2012)
- WHA64.15 Resolution Cholera: mechanism for control and prevention (May 2011)
- Ali M, et al. The Global Burden of Cholera, Bulletin of the World Health Organization, 2012;90:209-218A.
- IHME Global Burden of Disease Study 2010
- IVI. An Investment Case for the Accelerated Introduction of Oral Cholera Vaccines. Seoul, Korea 2012.
- Sur D, et al. Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: An interim analysis of a cluster-randomised, double-blind, placebo-controlled trial. Lancet 2009;374:1694-1702.
- Sur D, et al. Efficacy of a low-cost, inactivated whole-cell oral cholera vaccine: Results from 3 years of follow-up of a randomized, controlled trial. PLoS Neglected Tropical Diseases 2011;5:e1289.

Experts consulted

- Raymond Hutubessy, WHO
- Helen Matzger, BMGF
- Tom Wierzba, IVI
- Vittal Mogasale, IVI
- Firdausi Qadri, icddr,b
- David Sack, JHPSH
- John Clemens, UCLA
- Dipika Sur, National Institute of Cholera & Enteric Diseases
- Suman Kanungo, National Institute of Cholera & Enteric Diseases
- Martin Mengel, AAMP
- Brad Gessner, AAMP
- Louise Ivers, Partners in Health
- Kate Alberti, UNICEF
- Francisco Luquero, MSF
- William Perea, WHO
- Alejandro Costa, WHO
- Carsten Mantel, WHO
- Stephen Martin, WHO
- Jon Abramson, Wake Forest
- Alan Hinman Task Force for Global Health
- Jan Holmgren, U of Gothenburg
- Zulfiqar Bhutta (The Aga Khan University)
- Ira Longini, University of Florida
- Dennis Chao, Fred Hutchinson Cancer Research Center
- Robert Tauxe, CDC
- Cholera Coalition
- Partners in Health

ALLI.

Demand forecasting assumptions for cholera vaccination strategies

Element	Assumptions	Rationale		
Country scope	 23 high risk GAVI-eligible countries (per 2013 eligibility status); 21 countries forecasted to introduce with GAVI support in modelled time period 	Anticipated only early adopters to be included in the forecast (also in light of supply constraints)		
Target population	 1 to <15Y, 50% of high risk pop 1 and older, 19%¹ of high risk pop 	Urban slums or in rural areas without clean access to clean water (source: UN urban slum data and WHO / UNICEF Joint Monitoring Program (JMP) for Water Supply and Sanitation)		
Introduction dates	First introduction: 2015	PQ product currently available		
Uptake	Instant uptake (campaign analogue)	Standard GAVI uptake assumptions for campaign administration		
Analogue coverage	Demand: MSIA Fully vaccinated persons: MSIA – 18%	18% dropout was the midpoint from past OCV campaigns		
Products	1 dose liquid vial	Shanta's OCV		
Logistics	 Wastage Factor: 1.05 Buffer stocks = 0% of change between forecast years. 	Standard WHO and GAVI SDF assumptions		

1. Weighted average of reduced target population across countries to implement >1Y scenario in same countries within supply constraints

Cholera impact model assumptions: CSQUID

Model definition	 Dynamic model for cholera transmission Basic SIR model run in one year increments with population-level immunity in one year being based on the number of infections in recent years Model has one-year age cohorts No seasonal forcing or sporadic major outbreaks Modelling completed for four countries Bangladesh, DRC, Mozambique, and Uganda Primary model output is cases averted per 100k vaccinated
Key assumptions	 Vaccine effectiveness based on data from large trials of Dukoral and Shanchol 65% for adults (>4Y), 3 year duration of protection 38% for children (1-4Y), 2 year duration of protection Incidence rates for each modelled country Bangladesh: 3.0 / 1,000 DRC: 3.2 / 1,000 Mozambique: 3.2 / 1,000 Uganda: 1.4 / 1,000 Modelled with and without herd effects Apply CFR of 1.5-2.5% to convert to deaths averted (not completed by modelling group)
Extrapolation method	 Estimates from the four modelled countries scaled to full country scope using IVI's Phase I estimates (detailed on next page) Compare the ratio of deaths averted per 100k across the two models for the four countries Apply this ratio to the IVI estimates for the remaining countries Maintains the general magnitude of CSQUID's four country estimate Leveraging IVI's country-specific estimates to account for the possibility that CSQUID's four countries were not representative of broader country set

Source: CSQUID; detailed impact modeling methods available on request, please contact vis@gavialliance.org

ALL

Cholera impact model assumptions: IVI

	Guagantiklag		Eveneed	\backslash	Infontod		Recovered/
	Susceptibles	/	Exposed		Infected		dead
Model	 Population not vaccinated Vaccine waning is 70% in first two years post- vaccination; 50% the third year 	function (direct indirect transmission), takes into acco seasons, region and the environmental reservoir 30-35% of those	dual transmission function (direct and indirect transmission), that takes into account, seasons, regions		10% symptomatic90% asymptomatic1 week incubation period		Infectious period of 1.5 weeks Deaths obtained applying a CFR for symptomatic cases, country- specific
assump- tions	 0.64% every week of those recovered become susceptible again Takes into account herd protection effects 		environmental reservoir 30-35% of those vaccinated are still susceptible to	ι	 /accine efficacy: 1-15Y: 52% for 5 y 61% for 3 year inte >1Y: 60% for 5 yea Jnderlying incidence Region specific; e. Case fatality rates:1 Region specific; e. 	rvals ar inte rates g. 2 /	rvals : ¹ 1,000 in AFRO-D

1. From variety of trial sources based on WHO region

Source: International Vaccine Institute; detailed impact modeling methods available on request, please contact vis@gavialliance.org

Efforts underway to re-label vaccines for CTC use outside 2-8C

Cold chain volume requirements to fully immunise respective target populations through the routine programme over one year or through a campaign (in illustrative country)

24

*According WHO/IVB/13.04 Use of MenAfriVac[™] (meningitis A vaccine) in a controlled temperature chain (CTC) during campaigns <u>http://apps.who.int/iris/bitstream/10665/86018/1/WHO_IVB_13.04_eng.pdf</u>

Source: VIS 2013 analysis; WHO Vaccine Volume Calculator 2012 database: http://www.who.int/immunization_delivery/systems_policy/logistics/en/index4.html